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may be limited by the range of allowable time step choices. In this paper we analyze the
linear stability of the fully asynchronous methods termed AVI, for asynchronous variational
integrators. We perform a detailed analysis for the case of a one-dimensional particle mov-
ing under the action of a soft and a stiff quadratic potential, integrated with two time steps
in rational ratios. In this case, we provide sufficient conditions for the stability of the

I;;{:;?ggilc method. These generalize to the fully asynchronous AVI case the results obtained for syn-
Multiple time step chronous multiple time stepping schemes, such as r-RESPA, which show resonances when
Variational integrator the larger time step is a multiple of the effective half-period of the stiff potential. Addition-
Molecular dynamics ally, we numerically investigate the appearance of instabilities. Based on the experimental

observations, we conjecture the existence of a dense set of unstable time steps when arbi-
trary rational ratios of time steps are considered. In this way, unstable schemes for arbi-
trarily small time steps can be obtained. However, the vast majority of these instabilities
are extremely weak and do not present an obstacle to the use of these integrators. We then
applied these results to analyze the stability of multiple time step integrators in the more
complex mechanical systems arising in molecular dynamics and solid dynamics. We
explained why strong resonances are ubiquitously found in the former, while rarely
encountered in the latter. Finally, in this paper we introduce a formulation of AVI that high-
lights the symplectic nature of the algorithm, complementing those introduced earlier by
other authors.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Symplectic integrators are usually adopted as the integrators of choice for molecular dynamics simulation of systems of
particles (bio-molecules, proteins, crystals...) and for some computational mechanics applications. One of the reasons be-
hind this choice is their excellent long-time energy conservation properties, which can be traced back to the existence of
a shadow Hamiltonian function almost exactly conserved by the numerical trajectory, see, e.g. [40,5].

A powerful and flexible approach for deriving symplectic integrators stems from a discrete version of Hamilton’s princi-
ple, which led to the development of variational integrators [46,30,33,27]. In this approach the starting point consists in con-
structing a suitable approximation to the action integral, termed the action sum. The algorithm then follows by requesting
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the discrete trajectory to be a stationary point of the action sum. Any variational integrator is symplectic, and conversely.
Additionally, variational integrators can be constructed to have other outstanding conservation properties by taking
advantage of a discrete version of Noether’s theorem [29,33,28], which guarantees that for each symmetry operation of
the discrete action there exists a corresponding conserved quantity, as in the continuous-time case. These and other features
of the theory of variational integrators have been thoroughly discussed in many earlier references (see previous references
and [49,32,48,36,27,33]); hence we shall skip further discussions herein.

Asynchronous variational integrators (AVI) are a class of variational integrators distinguished by the trait of enabling the
use of different time steps for different potential energy contributions to a mechanical system. Their formulation and use in
the context of finite-element (FE) discretizations in solids and some fluid mechanics simulations can be found in [26-28],
and they essentially amount to considering a possibly-different time step for each element in the mesh. These algorithms
share many features with other multiple time step methods in computational mechanics, commonly known as subcycling
or element-by-element methods [37,4,4,37,21,45,10,8,7,13,12].

In the context of molecular dynamics, r-RESPA [47,14] is perhaps the most widely known multiple time step method. It
has been long recognized that this method can display resonance instabilities, especially in the context of molecular dynam-
ics simulations [22,1,41,43,31,6]. These resonances severely limit the relative size of the time steps. Several approaches have
been proposed to reduce these instabilities. Schlick et al. [1,2,39] used Langevin dynamics along with extrapolative methods.
An appropriate choice of the friction coefficient in the Langevin equation stabilizes the trajectories even with very large time
steps. The isokinetic Nosé-Hoover chain RESPA proposed by Minary et al. [35] is another method that produces stable tra-
jectories for large time steps. Mollified versions of r-RESPA such as MOLLY were developed by Izaguirre et al. [23]. MOLLY
retains instabilities but they appear for larger values of the time steps (up to 50% greater). When the fast potentials are as-
sumed to be quadratic, an elegant procedure, called the two-force method [16,17], removes all resonances and captures the
correct coupling between slow and fast forces (see also [19]). However, the extension of this scheme to situations with more
than two time steps has not been reported so far.

Contrary to molecular dynamics, resonance instabilities have not hampered the use of multiple time step methods in
computational solid mechanics. Stability analyses for several subcycling methods have been performed [20,3,9,8,7]. In par-
ticular, many interesting aspects of the stability of some subcycling methods have been highlighted in [8,9]. Therein, it was
posited that the reason behind the successful performance of multiple time step methods in solid dynamics is that the set of
resonant time steps is very small. Consequently (within some reasonable stability considerations), it is unlikely in practice
that resonant time steps will be chosen. Even though the algorithms analyzed therein are not symplectic, and hence essen-
tially differ from AVI, we shall see that these same observations are valid for AVI.

The key distinctive feature of AVI over r-RESPA or many of the subcycling algorithms is that time steps in arbitrary ratios
can be considered. This extra degree of freedom becomes very useful in FE simulations, since time steps can be made to vary
smoothly throughout the mesh. In the molecular dynamics context, this freedom enables the adoption of more general
decompositions of the potential energy, each one with a characteristic time and length scale. In fact, as we shall discuss
in this document, AVI generalizes r-RESPA to arbitrary (instead of integer) time step ratios.

The complex stability considerations found in previous multiple time step methods with integer time step ratios is en-
riched when rational time step ratios are considered. The description of these novel features and their analysis are one of
the two main contributions of this document. The second key contribution is to utilize this analysis and some carefully
crafted numerical experiments to explain the dichotomy in the behavior of AVI between molecular and solid dynamics
simulations.

The key contributions of the paper are:

(i) A linear stability analysis of AVI when two time steps h; and h, are used to integrate a one-degree of freedom har-
monic oscillator whose potential energy has been split into a stiff and a soft part. We provide, in the form of Propo-
sition 1, a bound on the trace of the amplification matrix for integrators in which h,/h; is a rational number. As a
corollary, a sufficient condition for the stability of the integrator follows. The resulting possible unstable time step
combinations generalize those obtained for r-RESPA in [1,39] for the same system.

(ii) A conjecture that the set of unstable time steps is dense and that arbitrary small unstable time steps exist. This con-
jecture is suggested by the theoretical analysis and numerical experiments. Systematic numerical tests in which all
unstable time steps were obtained along lines of the form h, = (p/q)h; (p and q integers) strongly support this con-
jecture. Most of these resonances, however, are extremely weak and would require millions of time steps or more
to be observed, so they have no practical implications.

(iii) A numerical study of the location of the strongest instabilities as a function of h; and h,, again for a harmonic oscil-
lator, which is similar to that presented in [11]. We propose a criterion to characterize the location of the strongest
resonances, and verify its validity by predicting the location of the most important resonances in the h;—h; plane.

(iv) We demonstrate, through numerical examples and some analysis, that the weak long-range forces often present in
molecular dynamics are the key culprit for the stringent stability limitations of AVL In the context of solid dynamics,
the local coupling between elements leads to a weak coupling between stiff and soft regions when these vary
smoothly in space. We show that as a consequence the set of time steps leading to unstable schemes is very small,
explaining why these resonance instabilities that are pervasive in molecular dynamics are only seldom observed in
FE simulations with AVI.
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Perhaps surprisingly, most of the features in the molecular dynamics and solid mechanics examples can be simply under-
stood with the analysis of the one-degree of freedom system. The integration of weak long-range forces with a large time
step near an integer multiple of the half-period of one of the natural modes in the system leads to a resonance instability.
This is manifested as an exponential growth of the amplitude of that mode. The width of the resonance for each mode, i.e. the
range of time steps for which a resonance is encountered, decreases with the stiffness of the long-range forces. Consequently,
the weaker the forces the more difficult it is to excite a resonant mode, and the slower the exponential growth is. In molec-
ular dynamics, the fact that long-range forces interact with every single degree of freedom in the molecule leads to wide
resonance intervals. Since in large molecular systems the set of natural frequencies is dense, it is almost certain that beyond
a certain threshold one of these frequencies will satisfy the resonance condition. The same limitation is found in most other
methods such as r-RESPA.

In contrast, in solid dynamics, soft elements integrated with large time steps also have the possibility of inducing a res-
onance in one or more of the high-frequency or stiff natural modes of the discrete structure. However, numerical examples
and analytical considerations show that the amplitude of the stiff modes decays exponentially fast in a soft region; this leads
to a very weak coupling between stiff and soft elements and to very narrow resonance intervals. These resonances are so
difficult to encounter even when an explicit effort to find them is made, that they effectively have no practical implications,
leading to a robust multiple time step integration algorithm. For the same reasons, it follows that it is safer to pick time steps
which vary smoothly in space, so that sudden transitions from stiff to soft materials do not induce resonant instabilities. This
is consistent with the findings in [9] for other multiple time step integrators in solid dynamics.

This paper is organized as follows: in Section 2 we present the derivation of AVI from a discrete version of Hamilton’s
principle, and comment about its implementation. Although the algorithm is essentially identical to that introduced in
[27], it is presented here in a framework better suited for molecular dynamics applications. The key difference is the defi-
nition of the positions for all the degrees of freedom at every potential update. This enables the construction of a single dis-
crete Lagrangian between any two consecutive potential updates, as opposed to the discrete Lagrangians per element that
naturally appear in the continuum mechanics setting of [27], but that do not have a natural analog in the ordinary differen-
tial equation case. By construction, it is then evident that AVI is symplectic. The AVI algorithm is presented in the non-stag-
gered form which is commonly found in molecular dynamics integrators.

In Section 3, the stability of r-RESPA discretizations for a harmonic oscillator is reviewed [1,39], since it is essential for the
subsequent analysis of the more complex AVI case in Section 4. Therein, the analysis proceeds by studying the stability
behavior of AVI in the case of a harmonic oscillator formed by two springs, in which one is very soft relative to the other.
The analysis reveals a sufficient condition for stability. We are not able to specify the behavior of the discretization when
these conditions are not satisfied, but numerical experiments show that instabilities are systematically encountered in at
least part of each connected time step interval in which these conditions are not met. A study of our conjecture that the
set of unstable time steps is dense follows. In particular, we provide specific examples of extremely small time steps which
lead to an exponential growth of the energy. The study of the location of the strongest resonances for the harmonic oscillator
is also presented here.

Section 5 contains the study of resonance instabilities for AVI in molecular dynamics and solid dynamics simulations.
Conclusions are provided in Section 6.

2. Variational derivation of AVI

To review the main ideas behind variational integrators we begin by recalling the simple case of the velocity Verlet (VV)
integrator and by showing its variational nature. This will simplify the later introduction of AVI. Consider a system of N par-
ticles with masses m = (m, ..., my), and positions given by Cartesian coordinates x = (X, ...,xy) with corresponding veloc-
ities v =% = (v1,...,vy); these particles interact according to a given potential function V(x). Their trajectories x(t) are
governed by Newton’s equations of motion F = Ma where F = —VV(x), M is the diagonal matrix with the particle masses
along the diagonal, and a = . For this system the VV integrator is given by:

h

Y12 :V;'_'_EM—le7 (13)
O i 4 R, (1b)
VT yi2 gM’le“, (1c)

where h is the time step, ¢ = jh, ¥ = x(t/), ¥ = v(f/), and F = F(¥), for any non-negative integer j. The VV integrator can also
be written in a time-staggered form:

P =X+
W32 _ yi2 L pMe P,

The VV integrator is commonly used in molecular dynamics because it is easy to implement, has a low computational cost,
and conserves energy remarkably well.
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We next review the variational derivation of the VV integrator, as shown for example in [24]. Following the usual con-
vention in Lagrangian mechanics, the position x and velocity v will be denoted by q and ¢, respectively. The Lagrangian
for the system defined above is given by the difference between the kinetic and potential energies:

N
La.q=>_5m
a=1

where m, is the mass of particle a and ¢, is the velocity of particle a. The action of an arbitrary trajectory q(t) of the Lagrang-
ian system is defined as the time integral of L(q(t),q(t)) in the interval of interest [0, T]:

Slg() / L(g

Hamilton’s variational principle states that the trajectory q(t) followed by the particles is a stationary point of the action
integral S among all smooth trajectories with the same initial and end points, q(0) and q(T), respectively. The Euler-Lagrange
equations of this variational principle are precisely Newton’s equations of motion.

Variational integrators are constructed by mimicking this variational structure in the discrete case. The essential idea is to
approximate the action over a discrete trajectory and use a discrete variational principle to obtain the algorithm. More pre-
cisely, the time interval [0, T] is partitioned into a sequence of times {¢'} = {t° =0,...,t" = T} with a time step h, and a dis-
crete trajectory on this partition is a sequence of positions {¢'} = {¢°,...,q"}. The approximation of the action, the action
sum, is constructed as

alldall* = V(@),

I\JI'—‘

Sal{d'}] = ZLd q.q"),

where L4(q, q) is the discrete Lagrangian, which in the case of VV takes the form:
- N1 lde— 4l V() + V(@)
—h (; >Ma T )

a 2
The integrator follows by employing a discrete version of Hamilton’s principle: the discrete trajectory renders 6Sq = 0 for any
variation dq satisfying §g° = 0 and 5g™ = 0. The discrete Euler-Lagrange equations for this variational principle are

(2)

DiLa(¢',¢"") + DoLa(¢ ' @) = 0 3)
for j=1,...,M—1, where D;Lq4(-,-) indicates the partial derivative of Ly with respect to its ith argument. This equation
implicitly defines a map (¢!, ¢)— (¢, ¢*!), which is the algorithm. The momenta {p'} are generally defined to be

P =DaLa(¢",¢) = ~Dila(¢. ¢"), 4)

where the second equality follows from the discrete Euler-Lagrange equations (3). For the discrete Lagrangian (2) and Eq.
(4), the momenta are given by

| g\ hov AL
pg—ma<ql hq} )‘i%(q]u)_ma<TqJ) +§§_C‘Ifz(q/a)~ (5)

Eqgs. (1a)-(1c) are recovered provided the velocities at half steps are defined as

o _q"“—qf
qll/z, . )

Eq. (4) implicitly defines a symplectic map (¢, p/)— (¢!, p*!), see e.g. [17], so that all variational integrators are symplectic.
In the case of VV, from Eq. (5) and given (¢, p/):

i+l A . . :
o () A g ae (b )

) .a+] _ ('1 h
P]aH =my <qu> 2 2‘;2 (qlﬂ)

As a result, variational integrators conserve energy very well (no drift) over long-time scales [38,15]. This is a key property
for molecular dynamics and other problems.

We discuss next the derivation of AVI. The types of asynchronous discretizations discussed herein are applicable to sit-
uations in which the potential V(q) can be written as the sum of K potentials:
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In the context of finite-element discretizations of continuum mechanics equations this decomposition is naturally accom-
plished on an element-by-element basis, while in the context of molecular dynamics for large proteins it is often achieved
by splitting the forces into strong, short-ranged ones and weak, long-ranged ones. In these situations it is possible to inte-
grate each one of the potentials V, with a different time step, obtaining in this way a more efficient algorithm for a given
desired accuracy.

The idea is then to assign to each potential V a sequence of times {0 =t0 < --- < th = T}. Additionally, we construct the
sequence of all times in the system {¢° < 0! < .- < 6™} by lumping together all potentlal times in a strictly increasing se-
quence; see the example in Fig. 1. As before, the position of the system at time ¢' is denoted by ¢, and a discrete trajectory is
the sequence of positions {¢°, ...,q"}. For each time ¢' we define the set .# (i) as

# (i) = {k|Fj,t, = 0'}.
For each k € (i), we can define:

W2t g and b2 g
where £, = 0.

The discrete Lagrangian for AVI is

Z zmaAH‘

with A9 = ¢! — ¢'. The discrete action sum follows as

M-1 o
= Lad.q"".i)
i-0

A graphical interpretation of this discrete Lagrangian is shown in Fig. 2.

One of the noteworthy features of this presentation, in contrast to that in [27], is that the discrete Lagrangian is not a
consistent approximation of the action during a time interval (¢, 6'"!), in the sense explained in [33]. Nonetheless, Sy is still
a consistent approximation of the action over the whole trajectory during the time interval [0, T]. This is evident from rear-
ranging the terms in the sum, namely

N M- 1 .
_ Z Z z 01+1 01)
a=1

=0

Rit172

-y kz Vil — >

ke (i) ke (i+1)

qa _ qa h;;+1/2
A0

Vi(q) (6)

2
+1 i
_qa

K M1 CVe(gRHY + Vi (gl
L~ S (e (@) + Vi(q*)

9
k=1 j=0 2

where g*/ is the position at time tj. The discrete Euler-Lagrange equations take the form:

Z hx 1/2+h:+1/2

Mgl 2 — mydl 1 = T e, )

ke (i)
where

i+1/2 def def qa - qa
qa 01+1 61 :
Eq. (4) defines the momenta {p°,...,p"}, to wit

tO tl t2 t3 f4
‘/1 Yl Yl Yl Yl Yl
I I
| | L |
| | | | |
| | | | |
I ! I ! T .
0‘00 TR ' 6 time
I I I I !
| o l |
I I I I I
‘/2 e . é . é
5 ty 1 t5 t5

Fig. 1. Example of a time discretization for AVL. In this case a split into two potential energy functions is adopted. The times for potential V; are
{0,t},2,¢e3,t1} and those of potential V, are {0,t},t3,t3,t3}. The resulting set of all time steps in the system is
{=0=0,0=t},0 =6, =82=0,0"=6,00=6,0°=t} =t =T}
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Fig. 2. Graphical interpretation of the arguments of the discrete Lagrangian for AVI, Eq. _(6), for a generic time interval (¢',0"). The first term on the right-
hand side of Eq. (6) approximates the action stemm_ing from the kinetic energy during (¢, 0*"). In contrast, each one of the two remaining terms account for
one half of the contribution of potentials at time ¢' and 6",

hi—1/2 aVk ) hl+1/2 aV’
p -m q1 1/2 k .3 ql 1+1/2+ <
ke‘z//(i) 2 aq“ ( ) k; 2 aq”

(a).

This derivation of AVI and the method itself differ slightly from those provided in [27,28]. The first difference with [27,28] is
the precise definition of the map (g, p’)—(g**', p'*'), which was absent in the previous references. One key consequence is
that it makes the symplectic nature of the asynchronous discretization evident: due to the two-point discrete Lagrangian
in Eq. (6) and its associated definition of the momenta, the resulting map is symplectic. In contrast, in [27], it is shown that
AVl is a multi-symplectic algorithm, which is a natural concept in the context of continuum mechanics, but that lacks a clear
or traditional interpretation in the ordinary differential equations setting.

The second difference is the use of a trapezoidal rule to approximate the action integral within each elemental time step,
as opposed to the rectangle rule adopted in [27,28]. A consequence of this choice is the appearance of the average of two
consecutive time step sizes in the discrete Euler-Lagrange equations (7). This difference vanishes when the time step for
each potential is constant.

Finally, by reverting to the x and v notation adopted at the beginning of the section AVI reads

) ) i+1/2 )
S D LY (8a)
Mg ke (i) 2 @xu
X+ = xi + (6i+1 _ Hi)l/iﬂ/z, (Sb)
i-1/2
ViFl — itz 1 hy " AV (x*1, (80)
Mg ke (i+1) 2 X

which reduces to VV when all time steps are identical.

It can also be verified that AVI is a generalization of the well-known r-RESPA [47]. To this end, it is enough to choose the
time steps for each potential such that hy,/h, = 1, is an integer, for all k > 1. In that case, Eqgs. (8a)-(8c) can be implemented
as shown in Algorithm 2 in Appendix A. This algorithm is identical to r-RESPA.

2.1. Algorithm implementation

Since each of the potentials V, has a different time step, a priority queue is used to determine the order in which the
potentials are evaluated. The elements of this priority queue have the form (tf,;, k), where tf,; is the next time at which poten-
tial V needs to be evaluated, with the elements sorted in ascending order with respect to t. In case of equality of ¢, for dif-
ferent ks, the ordering does not matter. As a result the element at the top gives the time of the next potential evaluation and
the indices j and k corresponding to the time tf,'c. The AVI routine in Algorithm 1 below is a possible implementation, best
tailored for problems with only a few different potentials with essentially all degrees of freedom as the arguments for each
one of them. This is a typical situation encountered in the simulation of macromolecules with molecular dynamics. In con-
trast, a version of the algorithm better suited for finite-element-like simulations has already been introduced in [27]. In this
latter case there are a large number of different potentials with only a few arguments each.

Algorithm 1. AVI algorithm

Input: 0°; x°; v°; set of all potential times t{k}
Output: (0%, x1, v}y, for all i

Initialization

i=0
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v =0 x =x0; ¢° = ¢°
F'2 _F12_¢
for all k do
Push (t0, k) into the priority queue Q
M; = size of array t//!
end for
Integrate the system over the time interval [0, T]
while priority queue is not empty do
Pop the top element (tf,;,k) from Q
gnew — l’j
k
if 07" > ¢°Y then
for all a do {I-[la/;f—kick}

Va=Va+3e
end for
Xi —Xx: Vi — vy 91’ — eold
i=i+1
for all a do {Half-kick}
Va = Va +% nn1u
end for

X =X+ (0™ — 0°)v {Drift}
FI/Z _ F—l/Z _ 0
end if
Hold _ Hnew
if j > 0 then
F'2=F'"2 (6 — 6, "HVVi(x)
end if
if j < M, then
F'?2 =F'? — (g7 — ) VVi(x)
Push (¢, k) into the priority queue Q
end if
end while
for all a do {l—!%f—kick}
Va = Vaq +% F?m,
end for
X=x;vi=v; 0

_ Hold

3. Stability of multi-step integrators

We begin by analyzing the stability of VV and r-RESPA. Similar analyses have been published elsewhere [39,1]. However,
since we will show that the results for AVI extend this analysis, we briefly recall the main results regarding VV and r-RESPA
(see e.g. [39,1] for a similar analysis).

Consider a system of n first-order ODEs:

x=Ax, x(0)=xo.

Let Q be the propagation matrix representing the numerical integrator x¥+! = Qx, where {x°,x',... xM} is a time discretiza-
tion of x(t). Then the integrator represented by Q is stable if and only if its eigenvalues ;(A) satisfy

14l <1 9)

and are semi-simple! when equal.

We should note that a linear stability analysis does not necessarily capture all possible instabilities. Non-linearities can
play an important role in rendering linearly stable schemes unstable, as shown in [42].

We now focus on the propagation matrix Q,,, for a 1-D harmonic oscillator

X+ Ax=0, x(0)=xp, x(0)=vy,

integrated with VV. The matrix Q,, acts on phase-space variables x and x. It is equal to:

! An eigenvalue is semi-simple if the number of independent eigenvectors corresponding to that eigenvalue is equal to its algebraic multiplicity.
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2
Ky h

Qv = ~hA(1-54) 1-54

It can be shown that the eigenvalues of Q,y satisfy the stability condition if and only if

2
h<—. 10
Vi (10)
The range of stable time steps can also be found by looking at the shadow Hamiltonian for the numerical integrator. Obtained
from backward error analysis, the shadow Hamiltonian for a symplectic integrator is such that the trajectory it generates
matches exactly the numerical integrator at each time step. Shadow Hamiltonians are presented and discussed in greater
detail in [17,25,34,18]. Here the shadow Hamiltonian will be constructed for QZ, instead of Q,y. The reason is that Qyy
may have negative eigenvalues in which case the shadow Hamiltonian is complex-valued. However, by considering Q32,
the eigenvalues are always positive and the resulting shadow Hamiltonian is always real. The shadow Hamiltonian for
the integrator with propagator matrix Q2, is
cos~! (1 —%A)

(5 +1p4q?) “mm ifh<2/VA
Hw(q.py) = { —1p? if h=2/V4,
cosh™! (g/l—l)

(-5 +hraa?) g it h>2/vA

where p,, is the conjugate momentum of the spatial coordinate g and

When h < 2/v/4 the shadow Hamiltonian agrees with the result from [34]. Noticing that the level sets of Hyy are ellipses if
h < 2//4 we conclude that VV is stable in this regime. However, if h = 2/// the level sets of Hyy are now lines whereas for
h > 2/+/A the level sets are hyperbolas. In both cases these contours correspond to unstable trajectories. Therefore, VV is
unstable if h > 2/V/A.

To study the stability of multiple time step integrators, we start by examining the basic resonance mechanism for these
integrators. Consider a 1-D harmonic oscillator with the splitting A = A; + A, where A; > A, > 0. Hereafter the spring with
spring constant A; will be referred to as the stiff spring and A, as the soft spring. We consider then the case in which the stiff
spring is integrated exactly. This results in a sinusoidal trajectory in time with constant energy as long as the soft spring is
not accounted for. The time-integration scheme for the soft spring modifies this trajectory by imparting an impulse (or
“kick”) on the oscillator at time intervals of length h,, which makes the momentum instantaneously jump to a new value.
Between any two consecutive impulses, the trajectory is still sinusoidal in time with constant energy. If h, happens to be
equal to an integer multiple of the half-period of the fast oscillator, then a resonance occurs, as clearly illustrated by the
phase diagram in Fig. 3. In this case the initial conditions are x = 1 and x = 0. The soft spring impulse is then always applied
whenx =1,%x <0orx = —1,x > 0.In both cases, the sign of the force is such that it results in a net growth in speed, bringing
the oscillator to continue moving on a larger ellipse with increased energy. This leads to a resonant behavior. An analog
behavior will be observed for values of h;, that are close to but not exactly equal to half of the period of the stiff oscillator,
as we shall see next.

%

Velocity
o

-1

: / e

-4 -2 0 2 4
Position

Fig. 3. Phase plane diagram of harmonic oscillator hit with a velocity impulse every half-period. The initial conditions are x = 1 and X = 0. Notice that in this
case the impulses result in a net energy growth, as evidenced by the radius of the circle representing the trajectory of the harmonic oscillator.
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With this resonance mechanism in mind we now proceed to examine the effect of integrating the stiff spring with a dis-
crete time step h;. Consider the case in which h, = ph; where p is an integer. A single integration step of length h, can be
decomposed as (see Egs. (8)):

xf+1 xf def xf
[ } = VsIOW(Qfast)pvslow [ ]} = Qr-RESPA il
V V

it
where
~ta g,
and
1-14, hy
Qs = {—hm] (1-%4) 1 —”j/h]’

Since Q, _gespa is the product of matrices each with determinant 1, its determinant is also 1. Therefore, when | Tr(Q, _gespa)| < 2,
the two eigenvalues are distinct complex conjugates lying on the unit circle. Hence the integrator is stable.

When |Tr(Q,_gespa)| = 2, the two eigenvalues of Q, gepa are identical, and equal to 1 or —1. Since stability requires the
eigenvalue to be semi-simple in that case, it follows that the algorithm is stable if and only if Q, ggsps = I, where I is the
identity matrix. This leads to h; = h, = 0. Hence, the case |Tr(Q,gespa)| = 2 is always unstable.

Henceforth we shall assume that the stiff spring integrator is itself stable, i.e. that hf/l] < 4. The trace can then be ex-
pressed in terms of an invertible function 6 : [0,2/v/4;] —[0, 7], 6(h;), such that:

2

h? . h?
cosH:l—jAl, sinf =h;, | A; l—z/l] . (11)

Denote:

1 0 .
cosf  sinf
G= and R(0) = .
lO A«l’fm)}’ ©) Lsinf) cosH}
Then it can be shown that Q;,, = GR()G ', and so
(Qse)” = GR(PO)G ', (12)

since R(6) is the rotation matrix. In this formulation an effective angular frequency can be defined as weg(h;) = 6/h; so the
effective period is given by Tei = 27/ wer = 27h; /0. Using this alternative form for Qg we find that

Tr(Q,gespa) = 2[cos(p0) — asin(p0)] (13)
where

o= h2A2

_2,//11(1 7§A1>-

The stability condition |Tr(Q, gespa)| < 2 can also be gleaned from constructing the shadow Hamiltonian. As noted before for
VV, to construct a real-valued shadow Hamiltonian we will consider the integrator with propagator matrix Q2 ggepa. The sha-
dow Hamiltonian for this integrator is

(14)

p2 cos~! (ITr(Q,. ) .
(ﬁ + %VA1q2> w if |Tr(Q, respa)| < 2
Hygespa(q, Pg) = § Str [Z,nsf:())] Pé if |Tr(Q.gespa)| = 25
2 cosh™! (3] Tr(Q, )| .
St (% - %"/Alqz) % if [Tr(Qgespa)| > 2

where p, is the conjugate momentum of the spatial coordinate q and

str = SEN(Tr(Q respa))

=it~ (50 1 ()|
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Since the level sets of H,.gespa are ellipses when [Tr(Q, gesps)| < 2 We conclude that r-RESPA is stable in this regime. However,
if |Tr(Q, respa)| = 2 the level sets of H,gespa are now lines whereas for [Tr(Q, gespa)| > 2 the level sets are hyperbolas. In both
cases these contours correspond to unstable trajectories. Therefore, r-RESPA is unstable if |Tr(Q gespa)| = 2.

To determine what choice of time steps results in an unstable r-RESPA scheme, we start with the instability condition
ITr(Q,gespa)| = 2. This condition is satisfied when

cos <2nh2 + d))' = !

Tesr V1402’
where
1 . o«
cos(¢) = Ve sin(¢) = Are

A few observations about these conditions are now appropriate. If h, = mT.g/2 for some integer m, the algorithm is unstable,
in agreement with the example discussed before. In fact, the instability appears for a range of values of h, near mT.g /2. Nota-
bly, these values always lie on only one side of mT ./2; they are always slightly smaller. Any value slightly larger than
mTe/2 leads to stable schemes, albeit with energy oscillations of very large amplitude. Looking at Fig. 4a taking h, to be
slightly smaller than T /2 gives an unstable scheme as shown by the diverging trajectory. On the other hand Fig. 4b shows
that taking h; to be slightly larger than T /2 gives an ellipsoidal trajectory and hence the algorithm is stable. However, the
high degree of stretching in the ellipse means that the energy exhibits large oscillations as a function of time.

Using the analysis developed thus far, the width and amplitude of these resonances can be determined. When o < 1 and
hiv/A; < 1, the resonance width around h, = mTeg/2, or interval length of resonant time steps hy, is found to be propor-
tional to the ratio A,/4}?

Iz%a: hyTegt 4, %mn/% (15)
2n /11(1—%1/1]) 1

where the first approximation uses tan~!(x) ~ mmn + x for x small and the second assumes that for hy small Ty ~ 27/+/A;7.
Therefore, the resonance width decreases as the stiffness A, of the soft spring becomes softer relative to 4;. One implication
of this is that resonances will persist even in the presence of a very soft spring but the probability of actually encountering
them is low.

The resonance amplitude can be calculated by determining the magnitude of the largest eigenvalue. From the trace and
determinant conditions the largest eigenvalue r; satisfies

1
[r1] = 3 |:|Tr(Qr—RESPA)‘ + Tr(Qr—RESPA)Z - 4}

The resonances occur for values of h, near integer multiples of T /2

271h
2 =Mmmn — ﬁ7
Tefr
°l 6 Tl
61 $s
4 .
4 . .
> 2 2 TI :
8 0f 8o oo
[ (3] . . l
> ot > 2 : .
-4t : :
-4 I
_6 3 .. :
Y S M Y S v A
-10-8 6 -4 -2 0 2 4 6 8 10 -8 -6 -4 -2 0 2 4 6 8
Position Position

(a) Time step hg slightly smaller than Tyse/2 (b) Time step hgo slightly larger than Tesr/2

Fig. 4. Phase plane diagrams for two choices of the time step h, near T.¢/2 with the trajectories sampled every h, and denoted by the dots. The trajectory on
the left alternates between the second and fourth quadrants. The arrows point in the direction of increasing time. Here A; =0.9, A, = 0.1, and
Ter/2 ~ 3.3115. Left: Taking the time step h, to be slightly smaller than Teg/2 (h, = 3.30) the energy of the system grows unbounded as shown by the
trajectory diverging from the origin. Both branches of the trajectory are approaching the eigenvector of Q, gpa corresponding to the larger unstable
eigenvalue (solid line). Right: Taking the time step h, to be slightly larger than Tes/2 (h, = 3.32) the resulting trajectory is a closed loop. As a result the
scheme is stable however the stretched ellipse implies that the energy exhibits large oscillations.
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where m is an integer and 0 < § < 2o + O(o3). Assuming once again that « is small and that h;v/4; < 1, we obtain the fol-
lowing approximation for |rq|:

2
Iri|~ 1 +/3cxﬁ2+\/;ﬁ4ﬁ2+ <f§ﬁ3+2ﬁ>a+ﬂ2a2.

The maximum of || is achieved near = o. With this, we get the following estimate for an upper bound on |r4[:

1 mm Ay
max|r|~14+a+=02~1+— ==, 16
ax |11 +5 R (16)
where we have only accounted for the linear term in o for the last expression. The amplitude of the resonance also
decreases as the A, spring becomes softer relative to A;. Note that the resonance amplitude is not maximum at
h, = mTex/2, but near:

Teff 1 Ay
4. Stability of AVI

We now turn our attention to the stability of the AVI algorithm. For two time steps h; and h, a propagation matrix Q y,
can only be defined if there exists a synchronization point for the time integration of the two springs. This is the case when
h,/h, is a rational number p/q, where p and q are coprime integers. The two potentials then become synchronous at time
t = gh, = ph,. We will next prove a sufficient condition for the stability of the AVI algorithm, and numerically investigate
the appearance of instabilities when the sufficient conditions are not satisfied.

Similarly to the study in Section 3, we need to calculate Tr(Q ,y,). An exact equation for the trace can be found analytically
for certain p and q (using a symbolic manipulation package for example). However, an equation valid for all p and q is ob-
tained when a linearization in the variable A, is performed:

Tr(Qaw) = 2[cos(p0) — ag sin(p0)], (17)
where
_haa(q - Tt )

g = p .
20/ A1(1 =3 Ay)

In fact, we provide an error bound for this approximation in the following proposition.

Proposition 1. Assume that the fast integrator is stable, namely, h%/ll < 4. If time steps hy < hy satisfy that h, /hy = p/q, for some
p and q coprime integers, then the following inequality holds:

[=3
V)

ITr(Qaw) — 2(c0s(p0) — ag sin(p0)]| < (2qo1)* (1+ 203 +20/1+3) 7, (18)

where 0 = hywe is defined in Eq. (11).

Before proving this result, let’s consider some of its implications. Notice first that the analysis in Section 3 (see Eqgs. (13)
and (14)) corresponds to the case g = 1. In that case, the trace is exactly linear in A, and Eq. (17) is exact. Next, Eq. (18) pro-
vides a sufficient condition for stability, namely, the AVI algorithm is stable if

a2
2

2| cos(p0) — ot sin(po)| + (2qot; )2 (1 202 + 2004 /1 + o@) <2. (19)

To better illustrate when instabilities may be found, we write

cos(pd) — ag sin(po) = /1 + o2 cos(pd + )

with

cosp=1//1+02 and sing =o4/y/1+02, (20)
from where it follows that

Tr(Qav) & 24/1 + o cos(p0 + &),
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provided that the right-hand side in Eq. (18) is small enough. In these circumstances, a sufficient condition for the integrator
to be stable is for p0+ ¢ = qh,we + ¢ to be sufficiently away from mm. This is more precisely stated in the following
corollary:

Corollary 1. Assume that the fast integrator is stable, namely, hf/h < 4. Then, for any ¢ > 0 there exists n > 0 such that if
p0 + ¢ —mm| > ¢ for all m € Z and qghy A5 /+/ Ay < 3 then

Tr(Qaw)l < 2
and the AVI integrator is stable.

Proof 1. Observe first that the condition |p0 + ¢ — mm| > ¢ for all m € Z implies that |cos(p0 + ¢)| < | cos(¢)|. Next, since
hf/l] < 4, we have that a4, o, € R and that o; = O(qo ). Finally, notice that if 0 < gh,4,/v/4; < 1 then

n )
0<qoy < ————=<1ij (21)
2\/1-"1 4

and the right-hand side of Eq. (18) satisfies

q-2 ]

a2 A1
(2qoc1)2<1 + 202 4 2044/1 +o<§> < (2i7)* sup (1 + 202 4 2004/1 +oc%)21

0<oy <iy
< (277 exp(7)). (22)

It is then always possible to choose 1 > 0 such that

q-2

ITr(Qav)| < 2| cos(e)[y/1 + o2 + (2qo¢1)2 <1 + 202 + 2044/1 + oc%)

< [2cos(e)]|/1+ 02 + (27)* exp(i))
<2. 0O

This corollary generalizes the r-RESPA case (q = 1) for gh,4,/+/A1 < 1, since in this case ¢ is also small and hence

the system is stable whenever ph, = gh, is away from mTes /2]

4.1. Proof of Proposition 1

We begin by constructing the propagation matrix Q,y, over the time interval t = 0 to t = gh, = ph; as a composition of
multiple elementary matrices. A simple expression of the resulting matrix product is in most cases difficult to obtain, so the
key step in the proof is to perform a Taylor expansion for the trace of Q,y, in terms of A,, which leads to several simplifi-
cations. To this end,

A3 d*Tr(Qan)
heo 2 dA3

Tr(Qavi)(42) = Tr(Qav)(0) + AZdrl(.Zl(ingVl)

This is exact for some 0 < A3 < A,. We will show that:

dTr(Qaw)

Tr(Qav)(0) + AZT = 2(cos(pf) — o Sin(po)), (23)
Ay=0
A2 d2Tr(Q £
%#m < (2qac1)2<1 + 202 + 2044/1 +a§> . (24)
2

These two equations prove our result.
We begin by defining a few matrices which are the building blocks of AVI:

S S I T N R 1
s = 7%2/12 1 f = 7}.71/11 11 i = 0 1 )
h2
Q VUV ]—71/11 hy
— VUV =
' ‘ Ay (1-5m) 1=

QS(ITI) = Q;l [vaq—mvsvsUmvf]-
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Some of these definitions have been previously introduced. Matrices Vs and V; correspond to kicks by the soft and the stiff
springs, respectively, while matrix U; represents a drift for a time interval of length ih, /q. The matrix Q; is the propagation
matrix for a complete time step of the fast spring. Similarly, Q;Q,(m) represents a kick-and-drift step with the stiff spring,
followed by a kick by the soft spring, and a drift-and-kick step with the stiff spring. The drift time m/qh, (U,,) is required to
reach the time at which the soft spring kicks. After the soft kick, the system drifts for a time (1 — m/q)h; (Uy_,) to reach the
next time step for the stiff spring. The presence of Q;"' in the definition of Q, was added for later convenience.

Let us introduce the sequence m; = ip (mod q), and

e[a]-[52] veres

where |x] stands for the largest integer smaller than x. The value of k; is the number of time steps the stiff spring needs to
perform between time steps i — 1 and i of the soft spring. Notice that this is exact because of the definition of Q with the
factor Q;'. It then naturally follows that:

q
> ki=p. (25)
i=1

The propagation matrix Q,, is then given by:

Qv = V5(Q0)MQ(mg1)(Q0)" ' --- Qu(m1)(Q) ' Vs

This product leads to a complicated expression for arbitrary values of A,, but it leads to a surprisingly simple one in the
limit of very small A,. Since Q,y; is an infinitely smooth function of A,, we can apply Taylor’s theorem. The constant
term is

QAVI‘AZ:O = (Qr)p-
The first derivative is equal to

9Qav; _
M |, 6/12

pavs+q1 pjaQs( )

i=1

(Qf) (Q)¥

where the derivatives are evaluated at A4, = 0. We can calculate the linear part of the trace:

v =1 2Q, (m;
Tr(Quu) = Tr((Q)) + 4Tr 2@ 2 + (@ Y- 2™} | oa2)
a4, =N
using the fact that Tr(AB) = Tr(BA). Since m; is a permutation of 1,...,q — 1, we also have:
&1 0Q, (i 2
Tr(Qun) = Tr(Qe)) + 42T | 20Q0 70+ @) 3 =) o, (26)
i= Ap=

where i has been substituted instead of m; in Q. The term 0Q,(i) /34, at A, = 0 is a quadratic function of i which we write as

0Q,(i)

oA, :A0+A1i+A2i2.

=0

The coefficients can be obtained from the definition of Q(i):

_ 4
00 hhy[ 10 hhy, | -5 1
= — A =—= . A= .
hz{l 0}7 ' q |:h1/11 —1] T 77"2:2

The sum can therefore be computed analytically:

a-1 ;
0Q, (i -1 -1gRqg-1
i=1 2 | 4p=0
which, together with the value of (Q;)? in Eq. (12), enables the direct computation of the second term in Eq. (26):
g1 hady (q— (£1) 1 4
d 24219 sd)
/12Tr< Q) N gj ) _ {5 2> ) sin(po). (27)
T A Ay(1 =5 4y)
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The first term in the same equation follows as

Tr((Q()") = Tr(GR(p0)G ') = Tr(R(p6)) = 2 cos(pt).

Together with Eqgs. (27) and (26), this proves Eq. (23).
We now establish a bound on the second derivative of Tr(Q,y,). The first derivative at an arbitrary A, is given
by:

az?fzv - 2)1,2 (Q0)*Qu(mg-1)(@0) " -+ Qu(m) Q) Vs

V(@) Q,(mg 1) (@) - Qu(mi)( Q)" o

q-
v, S @ m @) ~--a%%m,-)~~~Q5(m1><Qf>’“}vs.
i=1 2

Using the facts that 8°V,/04% = 0 and 9°Q,(m)/043 = 0, we have

62 QAVI a‘IS

=2 5 Q) Qume (@) Qu(m @

q-1
avs = Q0 Qu(me)(Q )"“~~~2%j<mf)--~Qs<m1><Qf>"l v

i=1

q-1
20, -(Q) 0 (me 1)@ - (m) - Qum) (@) | T
q-1
#2V2|5 (@0) Qe @ G m) ) @y @0 | Ve 28)
i=

i<j

In order to bound the second derivative, we need to recall some properties of matrix norms. Let Q be an n x n matrix, n € N,
then

ATQTQX

XX

IQIIE =TrQ'Q) IQl;= SUP

and it holds that ||Q||; = n'/?||Q||,. Additionally, for any two n x n matrices P and Q, it holds that

PQl < IPIQ]|
in any of the two norms. Finally, by Cauchy-Schwartz inequality we have
[Tr(AB)| < [|Al[¢]|Blle < nllA[l, B, (29)
We simplify the notations for clarity:
Qi = Gile(mi)Gv
R; = R(k;0),
which transforms Eq. (28) into
*Qau av _1 OV
= 2 R,G
oA CQURG
6V 0Q; _
-G ZquQq 1R, - 'aA;'“QleI}G 'V
q-1
0Q; _1 OV,
+2V,G LX; R, Q 1Ry, - @—A; o Q1Rk1} G @AZ
! 0Q; aQ,
+2V,G Zququleqil .A._J...&...Qle1 GV,

& oA, oA,
i<j
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We now simply denote || - || instead of || - ||,. Noticing that ||R;|| = 1, we have that
1| (0°Qau 4 OV OV,
=T < o [|Qqe
y r( ) < o S eIl 1
1y, OV _1 0V 0Q;
+(Jove] « Je S ve)) {Z Il 10 ] 1 1 1@ 30)
q-1
- 2Q; o0Q;
16V Y1 1 5 1@ty 19 1@
L{zj]
This equation is obtained by a simple application of Eq. (29). It can then be verified by direct calculation that
_10Vs Vs ||
04, 04, G| =0 (31)
1 OVS _ 1 OVS o 041
G VS@AZG =G aszSG =4 (32)
1
2
GV G| = <1 + 203 + 204/1 + oc%) , (33)
aQi 200
i} | gl
M| T Ay’ (34)

2
Qi1 < <l+2rxf+2aﬂ/l+a$> . (35)

The last two inequalities use the fact that
|? —i(q— )M < q?, forO<hid; <4 and 1<i<q-1.
Applying these results in Eq. (30), we get

2 -2

Tr(%) <4q(q-1)a§<1+2a§+2a],/1+a3>2
2 A*

< (2qa1)2<1 +202 +2004/1 + o@) ,

for any A such that 0 < A5 < A, which proves Eq. (24). O

4
2

4.2. AVI and r-RESPA resonances

In the forthcoming sections we denote the effective half-period Teg(h1)/2 by T1,2(h1). In Sections 4.2 and 4.3, all numerical
results were obtained using extended precision arithmetic (53 digits were typically used), and we will define a resonant
interval as an interval in the real line that contains all unstable time step values.

Given p and g, consider the problem of finding resonant points (h;, hy) along the line h, = §h1- Our previous analysis pre-
dicts that the resonant points are approximately located at h, = 2T for gh, A, /+/A7 < 1. The behavior for larger values of
gh,A,/+/A; was investigated numerically and presented next.

A typical result is illustrated in Fig. 5, which shows the value of Tr(Q,y,) as a function of h,. We note that: (a) its value
oscillates between —2 and 2 with a frequency close to p0/h, ~ qw,; and (b) an exhaustive examination of each local extre-
mum reveals that the value of the trace at each one of them is a resonant point. This leads to resonances located at approx-
imately h, = mT;,2(hy)/q, as before. Other numerical tests consistently displayed the same behavior as well. However, the
presence of these two features in all examples does not follow from the result of Proposition 1. We conjecture that both char-
acteristics are generally true, as expressed in the following statement, which remains to be proved:

Let t,4(h2) denote the value of Tr(Q,y,) evaluated at (h;, hy) = (qh,/p,h,), for any p > q coprime integers. Then, there
exists a constant C independent of p and q such that for any h, € (0,2p/(qv//A7)) there exists an extremizer h, of
tpq(h2) that satisfies

C
hy <h <hy+—. 36
psh sl U (36)

Additionally, all local extremizers are resonant points.
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47 o)

Trace

ha
(a) Case with p = 85, and hence hy ~ ha

Trace
[
|

_3 \ \
0 1 2
hg

(b) Case with p = 1025, and hence h; < ha

Fig. 5. Trace of Q,,, as a function of h,, when h, = ph, /q for given values of p and q. Two different examples are shown, which differ in the value of p, but
both adopt q = 32, A; = 7%, A, = n?/64. When the value of the trace is outside of the interval (-2, 2), the integrator is unstable. Zooming in on the regions
where the trace is near 2 or -2 shows that, in each instance, there is an interval of instability. However, these instabilities are weak except when h; is near a
multiple of Ty ,: these are depicted with circles. The main difference between the two cases is that the top plot shows additional large resonances besides
the multiples of T;/,. These are depicted by a square and a diamond.

Eq. (36) is motivated by the previous qualitative observation that the function t,4(h,) oscillates as h, changes with a fre-
quency close to qw.¢(qh,/p). It then easily follows that the corresponding approximate period is bounded as

21 h, 21

27 < .
qWegr(h1) qo(h) ~ qv Ay

The last inequality follows after noticing that

0(hi) > /A, (38)

for h; e [0, 7). The restriction 0 < h, < 2p/(qv/A4;) guarantees that only stable fast integrators are considered.

We explore next an important result that follow from assuming the previous conjecture to be true. This result states that
the set of resonant points is dense in the set H = {(h;,hy) € [0,2/v/41] x R | hy < h,}. More precisely, this means that for any
point (hy,hy) € H and ¢ > 0, it is possible to find a resonant point (h},h}) such that |hy — h}|+ |hy — h}| < e.

To prove this result, consider (h;,h;) € H and ¢ > 0. Choose p and q such that (hy, ph;/q) € H,

C <
Qv A, 4
It is evident that such a pair (p, q) exists, since p/q can be just adopted to be a rational approximation to h,/h; with q large

enough so as to satisfy the second condition in Eq. (39). Based on the above conjecture, we have that there exists a resonant
point h} such that

(37)

’ghl ~hp| <7 and (39)
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C <&
QA 4
Together, Eqs. (39) and (40) imply that |h, — h}| < /2. Since h] = hyq/p and q/p <1, we have from Eq. (40) that
|hi — h| < &/2, from where the result follows for any point in H and hence in H.

We illustrate this result with an example next, in which we arbitrarily selected a set of time steps
(hq,hy) = (0.0090579193,0.12698681)

and find a pair of resonant time steps nearby. In this case, we chose p = 85158 and q = 6075 such that p/q ~ h,/h;. An unsta-
ble point over the line h, = ph, /q was found at

(h}, hy) ~ (0.0090523798,0.12690914).

<

e

(40)

At this point we have
Tr(Quy) ~ —2 — 1.2350353 x 10 '°,

which is a very weak resonance. By choosing an even larger value for ¢, and hence p, we could have found an even closer
point.

A seemingly unusual consequence of the existence of a dense set of resonant points is that there are instabilities with
arbitrarily small time steps (h;, hy). As an example, we chose q = 10,000, p = 1024q + 1, A; = 7%, A, = ©w?/64. The first res-
onant point along the line h, = ph;/q was found at

h; ~9.6902126 x 108, hy ~9.9227787 x 10™°.

At this resonant point, the trace is —2 — 1.2873196 x 1072, The length of the instability interval is approximately 7 x 107%'.
Both features are depicted in Fig. 6, which shows the value of the trace of Q 4, near its first minimizer. Notice that both h,
and h;, are much smaller than the upper bound for stability of the fast integrator, 2/7. In general, the larger the values of p
and g, the smaller the values of the first resonant set of time steps.

4.3. Unstable curves

We next discuss some additional aspects of the numerical experiments. As mentioned, resonances have been found at
each local extremum, located at approximately h, = mT,,2(h1)/q. However, the vast majority of them are very weak. The
largest resonances are near points for which h, /T, is an integer. These resonances are the same type of resonances found
in r-RESPA (see result in Section 3 for r-RESPA), and are indicated using a circle in Fig. 5.

In between the strong resonances near h, = iTy; and h, = (i + 1)Ty, there are g — 1 weaker ones. We number the reso-
nances consecutively along the line h, = %hl as h, grows with an index m = 1,2,.... With this convention, r-RESPA reso-
nances correspond to m=0 mod(q). The next largest resonances were observed to consistently correspond
approximately to m = +p mod(q). More generally, let a, |—q/2] + 1 < a < |q/2], be the unique integer such that m = ap
mod(q) (with p and q having the greatest common denominator equal to 1). The strength of the resonance and the width
of the associated resonant interval were consistently observed to decrease with |a|. In practice, this means that resonances
with low values of |a|, suchasa = 0,a = 1 and a = —1, are the ones which are most likely to be encountered, since the others
are very narrow. In Fig. 5a the square corresponds to a = 1 and the diamond corresponds to a = —1.

1.5

0.5

6 4 > 0 2 4 6
x 107

Fig. 6. Trace of Q,y, + 2 as a function of h, — hg, with hy = gh,/p and hg ~ 9.9227787 x 107> being the smallest unstable value. The rest of the parameters
for this calculation are: ¢ = 10,000, p = 1024q + 1, A, = 7%, A, = ©?/64. Negative values on the vertical axis correspond to unstable values of h;.
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These observations are illustrated in more detail in Figs. 7 and 8, which show the width of the resonant interval and the
amplitude for each resonance, respectively, as a function of the extremum index m. For this example we adopted q = 1009
and p = 2439. In general, the width of each resonance is highly correlated with the magnitude of the trace. The r-RESPA res-
onances are shown with circles, and are indeed the dominant ones. The resonances for a = —3,-2, -1, 1,2, 3 are shown with
squares and are larger and wider. The remaining resonances are narrower and smaller (with a few exceptions). In this case all
extrema were found to be unstable as well, and indeed there are exactly 1008 resonances between the two r-RESPA peaks.
However, as emphasized by the number of decades spanned by the logarithmic vertical axis in Fig. 8, most resonances are
extremely weak. For most of them it would take millions of time steps or more to observe any visible drift in the energy.

The fact that only resonances with relatively low value of |a| are likely to be encountered is nicely displayed by the fol-
lowing numerical calculation. In this case, pairs of time steps are selected such that they are both integer multiples of a given
grid spacing h. For this study we adopted h = 0.0005, A; = 72, A, = w?/25, h < h; < 2/7, and h, < 3.5. If the propagation
matrix Q,y, for a given pair of time steps (hi, h;) has a spectral radius greater than 1, the pair is marked by a dark point
and the algorithm is unstable for that choice of time steps. Fig. 9 shows the resulting plot over the domain [h,2/7] x [h,3.5].

Let us consider first the top plot in Fig. 9. The first noteworthy feature is that dark points do not appear everywhere, as
would be expected from the fact that resonant pairs form a dense set. Instead, some curves stand out in the midst of a non-
uniform cloud of dark points. This is only an artifact of choosing a finite step size, h = 0.0005. Large resonant intervals are the
only ones likely to be visible on a plot with a finite resolution. As h goes to zero, the figure would be filled with more and
more dark dots and the lines would effectively “disappear”.

Approximate equations for these curves can be derived based on the previous empirical observations. Each of the thick
nearly “horizontal” lines in Fig. 9 correspond to a different integer value of h, /T2, the r-RESPA resonances. The remaining
curves are clearly narrower resonances, which we shall next see that correspond to low values of |a|.

Recall that a satisfies that m = ap mod(q), from where it follows that m = ap + bq for some integer b. Consequently, if
ph; = gh,, the resonance condition gh, ~ mT;, is satisfied if and only if

b 1 a

— - 41
s hy @1

For given values of a and b this is the equation of a curve in the (h;, h,)-plane.

In Fig. 9 (bottom row), we plotted the curves with a = 0 using thick solid lines (r-RESPA case), a = 1 with dotted lines,
a = 2 with the dashed lines, and a = —1 with thin solid lines; b was varied to obtain several curves. The agreement with
the location of the resonant points found numerically (Fig. 9, top row) is excellent. This comparison highlights the impor-
tance of |a| in determining the width of the resonant interval. It would be interesting to obtain an analytical relation between
the two that extends the asymptotic results in Section 4.

5. Why are AVI resonances ubiquitous in molecular dynamics but not in solid dynamics simulations?

Resonances are strong and common in molecular dynamics but seldom appear in solid dynamics simulations. We now
use the insight gained in the last two sections with the stability analysis of the one-degree of freedom system to provide
an explanation of the startling differences encountered on the performance of AVI in molecular dynamics and solid dynamics

Width of resonant interval

0 1000 2000
Extremum Index

Fig. 7. Width of the resonant interval as a function of the resonance index for ¢ = 1009, p = 2439, ,; = n? and 4, = (n/8)2. The vertical axis is in logarithmic
scale. Resonances of the r-RESPA type, in which h, is a multiple of T;,, are highlighted with circles. Resonances corresponding to m = ap mod(q), with
a=-3,-2,-1,1,2,3, are highlighted with squares. Extended precision arithmetic was adopted for this calculation to accurately compute the wide span of
decades in the vertical axis, including the width of resonances 1 and 2 on the left.
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Fig. 8. Amplitude of each resonance, illustrated as [Tr(Q,y,)| — 2 on the vertical axis, as a function of the resonance index for the case depicted in Fig. 7. The

vertical axis is in logarithmic scale. As in Fig. 7, resonances of the r-RESPA type are highlighted with circles, while those corresponding to m = ap mod(q),
with a = -3,-2,-1,1,2,3, are highlighted with squares.
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Fig. 9. AVI stability plot. Top figure: each unstable pair (hy, hy) is shown with a dot. Bottom figure: the theoretical prediction given by b/h, = 1/Ty,, — a/h,
for some pairs of a and b is shown (a = 0, -1, 1,2). The matching with the numerical results is excellent.
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simulations. To this end, we performed numerical studies on two simplified systems. The first one resembles a molecular
dynamics calculation; weak long-range forces are strongly coupled to local stiff springs. We analyzed the nature of the res-
onances by applying the results derived in the previous section. The second study considers the analog to a solid dynamics
calculation performed with a finite-element discretization, and consists of a mesh of springs with different stiffnesses. Indi-
vidual time steps for each spring are considered, with smaller time steps assigned to stiffer springs. We will see that in this
case resonances are present but they are weak and very narrow, in stark contrast with the first example. This explains in part
why such resonances are seldom seen in finite-element calculations.

5.1. Molecular dynamics analog

In molecular dynamics, particles are concurrently affected by potentials whose stiffnesses vary greatly. For example the
bond potential is very stiff while the electrostatic potential at large distances is very soft. To study the resonant behavior in
molecular dynamics we set up an analog using an infinite and periodic 2-D triangular harmonic lattice with a unit cell that
consists of an n x n mesh of equal masses. To m